EN7920
Mechanical Project

Course Aim: To provide engineering students with advanced understanding and specialist skills in engineering design, stress analysis, beam design, engineering ethics, pressure vessel design, strain measurement, environment impact assessment, prototype manufacturing integrated in a fully immersive PBL environment.

Short Title
Faculty
Credits
Pre-requisites
EN6904 (or ENB5904), EN6902 (or ENB5902), EN7917 (or ENB6917), EN7919 (or ENB6919), EN6107 (or ENB5107), EN6908 (or ENB5908)

Co-requisites
None

Anti-requisites
ENB6912, ENB6913, ENB6914, ENB6909

Version 4
Effective From
September 1, 2018

Indicative NQF Level: 7

Student Contact hrs: 300
Self-directed hrs: 300
Other directed hrs: 0
Total learning hrs: 600

NQF Sub-strand
Theoretical Understanding

Learning Outcomes

1. Evaluate and Analyse mechanical components, applied loadings and construction material in terms of stress, strain, stress planes, stress concentrations and failure; for a set of performance criteria

2. Produce detailed manufacturing engineering drawings using 3D CAD for engineering components and assemblies to meet industry standard.

3. Manufacture and fabricate mechanical components and assemblies to a specified design, working in teams and applying project management techniques

4. Design, critically analyse and build engineering components to meet design specifications and standards

5. Use appropriate strain measurement methods and techniques to analyse engineering components

6. Solve mechanical design problems involving thick, thin and compound cylinders, using analytical techniques

7. Demonstrate a general understanding of the principles of industrial control

8. Demonstrate ethical, legal and social responsibility as an engineering technologist including the critical analysis of the environmental aspects of a given engineering application using sustainable solutions