Bahrain Polytechnic

Topic: DIFFERENTIATION OF POLYNOMIALS

Introduction:

Differentiation is about finding rates of change of one quantity compared to another. Differentiation is used in analysis of finance and economics. One important application of differentiation is in the area of optimization, which means finding the condition for a maximum (or minimum) to occur. This is important in business (cost reduction, profit increase) and engineering (maximum strength, minimum cost.)

Video:

Simple Differentiation tutorial: https://www.youtube.com/watch?v=|k1wFBLipil

Outline:

- The general rule for differentiation
- Derivative of a constant
- Derivative of the nth power of an x
- Derivative of Constant product

There are many ways a question can ask you to differentiate:

- Differentiate the function...
- Find $f^{\prime}(x)$
- Find $d y / d x$
- Calculate the rate of change of...
- Find the derivative of...
- Calculate the gradient of the tangent to the curve...

Summary:

The general rule for differentiation is:
$f(x)=a x^{n} \longrightarrow f^{\prime}(x)=n a x^{n-1}$

In other words: You bring the power down to the
front to multiply and subtract 1 from the power.

Examples:

$$
\begin{aligned}
& \text { Q: Differentiate } y=x^{5} \\
& \text { A: } \\
& \frac{d y}{d x}=5 x^{4} \\
& \text { Q: Find the derivative of } f(x)=4 x^{3} \\
& \text { A: } \\
& f^{\prime}(x)=12 x^{2}
\end{aligned}
$$

A. Derivative of a Constant

$\frac{d c}{d x}=0$

This means that if a quantity has a constant value, then the rate of change is zero
Example:
$\frac{d}{d x}(6)=0$
B. Derivative of \boldsymbol{n} - \boldsymbol{t} h power of \boldsymbol{x} :
$\frac{d c}{d x} x^{n}=n x^{n-1}$
Example:
$\frac{d}{d x} x^{5}=5 x^{4}$
C. Derivative of Constant product:
$\frac{d}{d x}(c y)=c \frac{d}{d x}(y)=c \frac{d y}{d x}$
Here, y is a function of x. So we find the derivative of that function first, then multiply by the constant.

Example:

$$
\text { if } y=x^{7}, \text { then } \frac{d y}{d x}=\frac{d}{d x}\left(x^{7}\right)=7 x^{6}
$$

Applying the new rule, we shall have:

$$
\begin{aligned}
\frac{d}{d x}(3 y) & =\frac{d}{d x}\left(3 x^{7}\right) \\
& =3 \frac{d}{d x}\left(x^{7}\right) \\
& =3 \frac{d y}{d x} \\
& =(3)\left(7 x^{6}\right) \\
& =21 x^{6}
\end{aligned}
$$

Summary of Derivatives:

Constant	$\frac{d c}{d x}=0$
	$\frac{d}{d x} x^{n}=n x^{n-1}$
n-th power of x:	$\frac{d}{d x}(c y)=c \frac{d}{d x}(y)=c \frac{d y}{d x}$
Constant product	

Example 1:

Find the derivative of $y=7 x^{6}$

Answer:

Using the rule:

$$
\frac{d}{d x}(c y)=c \frac{d}{d x}(y)
$$

We can take the 7 out to the front:

$$
\frac{d}{d x}\left(7 x^{6}\right)=7 \frac{d}{d x}\left(x^{6}\right)
$$

And:

$$
\frac{d}{d x} x^{n}=n x^{n-1}
$$

Thus:

$$
\begin{aligned}
7 \frac{d}{d x}\left(x^{6}\right)= & 7 \times\left(6 x^{5}\right) \\
& =42 x^{5}
\end{aligned}
$$

Note: This can be done in one step as follows:

$$
\frac{d y}{d x}=42 x^{5}
$$

Example 2:

Find the derivative of $y=3 x^{5}-1$

$$
y=3 x^{5}-1
$$

Now:

$$
\frac{d}{d x}\left(3 x^{5}\right)=3 \times 5 x^{4}=15 x^{4}
$$

And since: $\frac{d c}{d x}=0$ it means that $\frac{d}{d x}(-1)=0$
So:

$$
\frac{d y}{d x}=\frac{d}{d x}\left(3 x^{5}-1\right)=15 x^{4}
$$

Example 3:

Find the derivative of:

$$
y=13 x^{4}-6 x^{3}-x-1
$$

Now taking each term in turn:

$$
\begin{aligned}
& \frac{d}{d x}\left(13 x^{4}\right)=52 x^{3}\left(u \operatorname{sing} \frac{d}{d x} x^{n}=n x^{n-1}\right) \\
& \frac{d}{d x}\left(-6 x^{3}\right)=-18 x^{2}\left(\text { using } \frac{d}{d x} x^{n}=n x^{n-1}\right) \\
& \frac{d}{d x}(-x)=-1\left[\text { since }-x=\left(-\left(x^{1}\right) \text { and so the derivative will be }-\left(x^{0}\right)=-1\right]\right. \\
& \left.\frac{d}{d x}(-1)=0 \text { (since } \frac{d c}{d x}=0\right) \\
& \text { So } \\
& \frac{d y}{d \boldsymbol{x}}=5 \mathbf{5} x^{3}-\mathbf{1 8} x^{2}-1
\end{aligned}
$$

Example 4:

Evaluate the derivative of $y=x^{4}-9 x^{2}-5 x$ at the point $(3,15)$
Answer:
$y=x^{4}-9 x^{2}-5 x$
So:
$\frac{d y}{d x}=4 x^{3}-18 x-5$
At the point where $x=3$, the derivative has value:

$$
\begin{aligned}
\frac{d y}{d x} & =4(3)^{3}-18(3)-5 \\
& =4 \times 27-18 \times 3-5 \\
& =49
\end{aligned}
$$

This means that the slope of the curve $y=x^{4}-9 x^{2}-5 x$ at 3 is 49 .

Exercises:

Find the derivatives:

1) $\mathbf{f}(x)=x^{9}+8 x^{2}+x+9$
2) $f(x)=18 x^{2}+9 x^{3}-4 x^{7}-91$

Answers:

1) $9 x^{3}+16 x+1$
2) $36 x+27 x^{2}-28 x^{6}$
3) $240 x^{2}-8 x+3$
4) $100 x^{19}+152 x^{18}-8 x$

Bahrain Polytechnic
3) $g(x)=80 x^{3}-4 x^{2}+3 x+7$
4) $g(x)=5 x^{20}+8 x^{19}-4 x^{2}+82$

